
 

Determining Research Priorities for Astronomy Using Machine 1 
Learning  2 

 3 

Brian Thomas , Harley Thronson , Anthony Buonomo , Louis Barbier  4 

 5 

Abstract 6 

 7 

We summarize the first exploratory investigation into whether Machine Learning 8 

(ML) techniques can augment science strategic planning. We find that an 9 

approach based on Latent Dirichlet Allocation (LDA) using abstracts drawn from 10 

high-impact astronomy journals may provide a leading indicator of future 11 

interest in a research topic.  12 

 13 

We show two topic metrics that correlate well with the high-priority research 14 

areas identified by the 2010 National Academies’ Astronomy and Astrophysics 15 

Decadal Survey. One metric is based on a sum of the fractional contribution to 16 

each topic by all scientific papers (“counts”) while the other is the Compound 17 

Annual Growth Rate (CAGR) of counts. These same metrics also show the same 18 

degree of correlation with the whitepapers submitted to the same Decadal 19 

Survey. 20 

 21 

Our results suggest that the Decadal Survey may under-emphasize fast growing 22 

research. A preliminary version of our work was presented by Thronson et al. 23 

(2021).  24 
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1. INTRODUCTION 25 

 26 

One of the most critical planning activities in the sciences is 27 

identifying credible priorities for investment. The most high-profile process 28 

of scientific prioritization is the National Academies’ Decadal Surveys.  29 

 30 

A principal challenge faced by this process is the Survey panelists’ need to 31 

assess a large -- and rapidly growing -- amount of relevant information, 32 

specifically many tens of thousands of published research papers. The 33 

potential input materials have increased greatly over the years in both 34 

variety and quantity, while the basic processes of the Surveys -- and other 35 

strategic planning activities -- have changed relatively little. The primary 36 

approach for the Surveys over the past half-century (Dressler 2016) remains 37 

the same: a central steering committee of a couple dozen members supported by 38 

large specialty panels. This leads to the primary motivation of our work: are 39 

there ways to substantially improve the current process of identifying the 40 

highest-priority science without adding many additional personnel?  41 

 42 

We believe that it is time to take advantage of Machine Learning (ML) to 43 

augment the daunting task of determining trends and priorities in science from 44 

a vast amount of information. Advances in ML over the past decade have been 45 

impressive; increasingly powerful ML techniques can comb through a large 46 

corpus of unstructured text to reveal insight into their contents. There have 47 

recently been examples relevant to the process of science prioritization. For 48 

example, Zelnio (2020) reports the successful use of ML to evaluate research 49 

literature for promising technologies, and Krenn et al (2019) demonstrate a 50 

method used to predict future trends in quantum physics.  51 

 52 

2. METHODOLOGY AND ANALYSIS 53 

 54 

Our goal was to explore whether an AI-based approach would be able to 55 

significantly enhance human decision-making with regards to high-impact 56 

science research topics. We have created ML models trained on the corpus of 57 

scientific research available in advance of the 2010 Decadal Survey. Our 58 

process is described more fully in Thronson et al. (2021) and Thomas et al. 59 

(2021). 60 

 61 

Briefly, Natural Language Processing (NLP) was used to process abstracts and 62 

titles drawn from peer-reviewed papers published in the top 10 high-impact 63 

journals in astronomy identified per Thomas (2021) during the time period 1998 64 

to 2010. Papers with abstracts of fewer than 100 characters were filtered out 65 

of the dataset, leaving ~85,000 abstracts.  We utilized NLP to extract 66 



 

scientific terms from the abstracts and use these as features in an algorithm 67 

based on Latent Dirichlet Allocation which groups them into research topics.  68 

 69 

Measurements of the growth in and relative popularity of the topics may be 70 

derived. To determine popularity, we add the fractional contributions that 71 

each topic makes to every abstract in the corpus, or “counts”. To determine 72 

growth rate, we calculate the time series of counts for each topic. These time 73 

series may then be analyzed to determine the Compound Annual Growth Rate 74 

(CAGR). The “Research Interest” (RI); that is how much overall interest the 75 

research community places on a given topic, may be quantified from these 76 

measures via 77 

 78 

RI(t) = (CAGR(t) + 0.1) * counts(t)       (1) 79 

 80 

where t is the topic.  81 

 82 

We next applied these derived topic models to the science frontier panel 83 

chapters 1 - 4 for the 2010 Astronomy and Astrophysics Decadal Survey (“2010 84 

corpus”). After cleaning and extracting features as before, we derived counts 85 

by topic for each of the paragraphs in the 2010 Survey. Paragraphs where the 86 

top three topics contributed less than half of the summed counts total for the 87 

were dropped (i.e., these paragraphs did not have good representation by any 88 

topic models). A “document content score” (or DCS) for each topic was then 89 

derived by taking the remaining paragraphs and summing their counts by topic.  90 

 91 

These topic models and associated metrics provide a means to quantify and 92 

compare topic content in the literature and the Decadal Survey. We may use 93 

this to check for any common relationships and as a check on the validity of 94 

these metrics. Figures 1a and 1b show the results of this evaluation.  95 

 96 



 

 97 

Figure 1a (left) The 1998 - 2010 literature RI versus the 2010 Survey 98 

DCS by topic (red dots) indicates a significant, but moderate 99 

correlation exists. Conversely, only topic CAGR is correlated with the 100 

estimated topic Mean Lifetime Citation Rate (MLCR) (Figure 1b, right). 101 

 102 

Figure 1a compares the RI of published abstracts with the 2010 corpus DCS. We 103 

find a highly significant (P < 0.000001) correlation of moderate strength (R  104 

0.6), which indicates that research which is both growing in interest and/or 105 

already has significant research interest is well-represented in the Decadal 106 

Survey. A separate analysis of the submitted whitepapers (not shown) also 107 

indicates a similar correlation between RI and the content score of the 108 

submitted whitepapers.  109 

 110 

An essential assumption we have made is that the published body of research 111 

accurately reflects the interests and priorities of the community of active 112 

astronomers. In order to help ascertain the validity of this assumption we 113 

have compared counts, CAGR, and RI for our corpus against the estimated MLCR 114 

(Thomas 2021) for these same papers as grouped into each topic. Only CAGR was 115 

found to be correlated with the MLCR (R  0.7, P < 0.000001; see Figure 1b). 116 

 117 

3. DISCUSION 118 

 119 

Unlike the MLCR, a metric based on citation rates which are a lagging measure 120 

of interest in topics of research, these new measures are leading indicators, 121 

which makes them attractive for use in planning. There appears to be good, 122 

albeit not perfect, correspondence between the frequency of mention of future 123 

high-priority research reported in the 2010 Survey and with the content of 124 



 

submitted whitepapers to the RI as determined by the literature of the prior 125 

decade. Interestingly, we find only CAGR to be significantly correlated with 126 

the estimated MLCR. This result suggests that the Decadal Survey places 127 

significant emphasis on established research and may under-emphasize new, 128 

growing research topic areas.  129 

 130 

We note that in all cases our correlations, although significant, are of only 131 

moderate strength and the resultant coefficient of determination (R2), a 132 

measure of how much of the variability in one variable can be "explained by" 133 

variation in the other, is fairly weak (R2 ~ 0.3 - 0.4). Two reasons may 134 

explain why. First, in cases we may be under-sampling the trend in the topic 135 

time series, which would lead to some variation in measured CAGR. An 136 

alternative issue affects measured DCS: our technique models language present 137 

in scientific abstracts, but this may be significantly different from the 138 

language present in the 2010 Survey corpus and could sometimes result in 139 

lowering the DCS values. 140 

 141 

Nevertheless, there is still immediate value in applying this type of analysis 142 

to the science prioritization process. The CAGR measure of topics may be 143 

exploited to identify probable future impactful research topics and papers, 144 

thus creating valuable curated reading. We plan to further understand the 145 

variation and uncertainties in Figure 1, which may make it possible to 146 

distinguish topic regions in these diagrams and provide additional insight. 147 

 148 

 149 
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